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Proposition 0.1 (Exercise 1.1.10). Let (X, x¢) and (Y, yo) be pointed, path-connected spaces.
Let f: 1 — X x{yo} and g : I — {xo} X Y both be loops based at (zo,yo). Via inclusions,
we can think of f,g as loops I — X XY based at (xo,y0). Let px : X xY — X and
py : X XY =Y be the standard projections. Then we have f - g~ g- f via the homotopy

g(2s) 0<s<t/2
hi(s) = 4 (pxf(2s —1),pyg(t)) t/2<s<t/2+1/2
g(2s — 1) t/2+1/2<s<1

As a consequence, we have [fllg] = [g][f]-

Proof. Define h; as above. We check that the potentially conflicting definitions agree on the
overlaps. When s = t/2, we have

hu(s) = 9(2s) = g(t) = (z0, pyg(t))
hu(s) = (px f(2(t/2) = 1), py (9(1)) = (px f(0), pyg(t)) = (x0, py g (1))

When s =t/2 + 1/2, we have
hi(s) = (px f(2(t/2+ 1/2) = 1), pyg(t)) = (px f(t+1 = 1), pyg(t))

(px f(1),pyg(t)) = (w0, pyy(?))
hi(s) = (w0, pyg(2(t/2 +1/2) = 1)) = (20, pyg(t + 1 = 1)) = (w0, pyg(t))

Now we check that h; is a homotopy of paths. It is immediate to check that it fixes the
endpoints for all t:



Now we show that hg = f-gand hy =g - f.

g(2s) 0<s<0
ho(s) = 4 (pxf(2s),pyg(0)) 0<s<1/2
g(2s — 1) 1/2<s<1

(px(f(25),90) 0<s<1/2
g(2s —1) 1/2<s<1

Thus f-g=>~g¢g-f. Hence
gl =1f -9l = lg- 1] = lg]l/]
O

Proposition 0.2 (Exercise 1.1.14). Let X, Y be path connected spaces. Let p; : X XY — X
and py : X XY =Y be the projections (x,y) — x and (x,y) — y respectively. We have
induced homomorphisms pr. : T (X X Y) = m(X) and poy : m(X X y) — m(Y). Define
¢:m(X xY) = m(X)xm(Y) by

Then ¢ is a group isomorphism.

Proof. First we show that ¢ is a group homomorphism. Since p;, is a homomorphism,

p([f1l9]) = (PrLf]) (p1:[9])

and likewise for po,. Thus

o(1f1l9]) = (pr([f1lgD): p2([f1lg]) = (1D (Pr:lg]). (P2 [f]) (p2:[9])
= (pre[f1 p2ulf1) (prelg), p2:lg]) = (01£1)(¢lg])
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s0 ¢ is a homomorphism. Now we show that ¢ is surjective. Let ([f.], [f,]) € m1(X) x m (YY),
and choose representatives f,, f,. Define f: 1 — X x Y by f(t) = (f.(t), f,(t)). Then

OLf] = (p1:[f] p2elf]) = ([ 0 [l [p2 0 f]) = (2] [13])

Hence ¢ is surjective. Finally, we show that ¢ is injective by showing that the kernel is trivial.
Let [f] € ker ¢, and choose a representative f. Since [f] € ker ¢, we have p1.[f] = [p1of] =0
and po.[f] = [p2 o f] = 0. Thus p; o f and py o f are homotopic to constant maps, say via
homotopies h! : I — X and h? : [ — Y, that is,

hh=piof hi=psof

h%:cl h%:CQ

for some constants ¢; € X,co € Y. Then f is homotopic to a constant map via (s,t) —
(hi(s), hi(s)), since

(5,0) = (ho(s), ho(s)) = (pro f(s),pa o f(s)) = f(s)
(87 1) = (hi(8)7 h%(S)) = (01702)

Thus [f] = 0, so ker ¢ is trivial, so ¢ is injective. This completes the proof that ¢ is an
isomorphism. O

Lemma 0.3 (for topological group problem). Let X be a topological group with identity e.
For loops f,g : I — X based at e, define fxg: 1 — X by (f *xg)(s) = f(s)g(s). This
induces * : m(X,e) x m (X, e) = m(X,e) given by [f] *[g] = [f *x g]. We claim that this is
well-defined. Furthermore,

(fxg9)- (f'xg)=(f-f)*(g-9)
Using - for the usual multiplication in m(X), we have
(1) = (Lol - [g']) = (IF] * L)) - (Lf] * [9])

Proof. Suppose [f] = [f'] and [g] = [g], so we have homotopies f; : [ - X and ¢, : [ — X
satisfying

ho(s)

hi(s) = f'(s)g'(s) = (f' * g')(s)
hi(0) = £(0)g:(0) = e

hi(1) = fi(1)gi(1) = e



Thus h; is a homotopy from f x g to f' x ¢, so [f x g] = [f' * ¢']. Thus the operation is
well-defined. Now we compute

((f*g)(f,*g'))() {(f*g)(QS) 0§s§1/2

fxg)2s—1) 1/2<s<1
= (/-
((f

0<s<1/2
f’2$ 23—1) 1/2<s<1
2s

0<s<1/2 g(2s) 0<s<1/2
—1 1/2<s<1 gd(2s—1) 1/2<s<1

+9'(s))
-9))(s)

Thus
(fxg)-(f'*g)=(f f)*(g-9)
By reflexivity, from this we get
(fxg)-(f'xg)=(f-f)*(9-9)
Thus
(L1177 * (o] - [g1) = ([F1 % Lgl) - ([FT % [9)
O

Lemma 0.4 (Eckmann-Hilton Theorem). Let X be a set with two binary operations x, -
Suppose that both operations have a unit, that is, there exist e,e’ € X so that

ccx=r=ux-¢ dxr=x=xx¢
for all x € X. Suppose also that for all w,z,y,z € X we have
(w-z)*(y-2) = (wxy) - (zx2)
Then -, x are equal, associative, and commutative. That 1s, for all x,y,z € X,

T-Y=x*y
(@ y) z=z-(y-2)

Proof. First, we show that e = ¢’.

e=e-e=(*xe)-(exe)=( e)x(e-¢)=exe =¢



Let x,y € X. Then

x-y=(rxe)-(exy)=(r-e)x(e-y) =xx*xy

Thus the operations coincide. Also,

x-y=(exx) (yxe)=(e-y)x(rx-e)=yxzx

Thus x x y = y * x so the operations are commutative. Finally,

r-(y-z)=(-1)-(y-2)=(@y) -1-2)=(y) =z
Thus they are associative. O

Proposition 0.5 (written exercise from Prof. Hedden). Let X be a topological group. Then
m (X, e) is abelian.

Proof. Define multiplication of paths elementwise as in Lemma [0.3|above. As shown in that

lemma,
(LF1- L) * (Lol - [9]) = (Lf1 = [gl) - ([F] % [9])

Thus -, * are binary operations on m(X) satisfying the hypotheses of the Eckmann-Hilton
Theorem, so they are equal and abelian. Thus the usual multiplication on (X)) is abelian.

[]

Proposition 0.6 (Exercise 1.1.18, part one). Let A be a path-connected space. Form X by
attaching an n-cell €™ with n > 2. Then the inclusion . : A — X induces a surjection on 7.
That is, vy : T (A) — m(X) is surjective.

Proof. Let f: 8" ! — A be the attaching map. Then X = AUe", where A and e" are path
connected and open in X, and ANe™ = f(S"!) is also path-connected. Let zo € f(S™71).
By Lemma 1.15 (Hatcher), every loop in X based at x is homotopic to a product of loops,
where each loop is either contained in e” or A. Since n > 2, a loop contained in e" is
nullhomotopic, so every loop in X is homotopic to a loop in A. Thus if [f] € 7 (X, xo), there
there is a loop f’: I — A so that [f'] = [f]. We have f" =10 f’, so

Wlf 1=l f1=1f1=1[f]
Hence ¢, is surjective. O

Proposition 0.7 (Exercise 1.1.18a). The wedge sum S'V S? has fundamental group Z.

Proof. As noted in Example 0.11 of Hatcher, S* vV S? can be formed by attaching S? to S*
via a constant map. By the above, the inclusion ¢ : S* — S' Vv S? induces a surjection
Ly 2 m(ST) = m (ST V S?). By the first isomorphism theorem of groups,

T (St Vv S?) =2 1 (Sh)/ ker e,

Thus 7 (S! Vv .S?) is isomorphic to a quotient group of Z, so it is cyclic. Note that 7 (S!V .S?)
is not finite, since it contains infinitely many non-homotopic loops (take loops winding n
times around the S! part for n € N). Thus 7;(S! v S?) is infinite cyclic, that is, isomorphic
to Z. O



Proposition 0.8 (Exercise 1.1.18b). Let X be a path-connected CW complex with X' its
1-skeleton. Then the inclusion map v : X' < X induces a surjection v, : m(X') — m(X).

Proof. The space X is formed from X' by attaching n-cells for n > 2. First, suppose there
are finitely many cells ey, ..., e, Let Xo = X!, and define X; to be the CW complex formed
after attaching e; to X;11, so Xy = X. Then each inclusion ¢; : X; — X;,; induces a
surjection ¢, : m (X;) — m(Xi41), so the (finite) composition

Uosb (k1) -+ - Uixbox = (Lklh—1 - L1L0)x = L

is surjective.
Now suppose that X has infinitely many cells. Let [f] € m1(X) and choose a representa-
tive loop f. The image of f is a compact subset of X, so by Proposition A.1 in the Appendix

(Hatcher), the image is contained in a finite subcomplex X C X. Let X be the 1-skeleton
of X, 50 X C X' Let7: X' < X be the inclusion.

By the result in the finite case, 7, : m (71) — m(X) is surjective. Since the image of f
lies in X, we can think of [f] € m(X). By surjectivity of 7., there exists [ﬂ € m (71) SO

that 7, [ﬂ = [f]. Choose a representative f Since the image of fis contained in X C X L

we also have [ﬂ € m(X"'). Note that ¢ o f: 70 fsince the image of ]?lies in X'. Thus

Thus ¢, is surjective. O

Proposition 0.9 (Exercise 1.3.1). Let p : X = X bea covering map and A C X, and let
A=pY(A). Then the restriction p|; : A — A is a covering map.

Proof. Let a € A. Since p is a covering map, there is an evenly covered neighborhood U so
that a € U C X. That is,

p N U) =] |Va

where each U, is mapped homeomorphically to U by p. By definition of subspace topology,
U N A is an open neighborhood of a in A. Using basic properties of preimages,

pHUNA) =p  (U)Np Y (A) = <|_| Ua> NA=| |U.nA4)
Then B B
p(UaNA) Cp(Uy) Np(A) =p(U,)NA=UNA

SO p|UamZ Ua N A — UnN A is well-defined. First we claim that it is surjective. Let
x € UN A. Since z € U, there exists z, € U, so that p(z,) = z., Since z € A, x, € A,



so z, € Uy N A. Thus Ply.nx 1s surjective. Tt is injective since it is a restriction of the
injective map ply, : Uy, — U. Thus it is bijective. It is continuous because it is a restriction
of the continuous map p. It has a continuous inverse since its inverse is a restriction of the
continuous inverse of p|y, .

Thus p| v.ni maps Uy, N A homeomorphically onto U N A. Since U N A is a disjoint union
of such sets, U N A is an evenly covered neighborhood of a € A. Hence p|; is a covering
map. 0

Lemma 0.10 (for Exercise 1.3.2). Let p; : )?1 — X1 and ps : )N(Q — Xo be set maps. Let
U, C Xy and Uy C X5. Then

(p1 X p2) (U1 x Us) = py ' (Un) % p3 ' (Us)

Proof. This is a straightforward use of definitions.

{(F1,72) € X' x X2 (py X po)(F1, T2) € Uy x Uy}
{(F1.72) € X' x X2 (p1(T1), p2(32)) € Uy x U}
{(xl,xg) e X' x X?:3 € py(Uh), T € py ' (Un)}

=pi (Uh) x py ' (Us)

(p1 X p2)(Ur x Uy)

O

Proposition 0.11 (Exerc1se 1.3. 2) Let p : X, — X, and p. Do : X, = X, be covering maps.
Then the product p; X ps : X1 X Xg — X1 x X3 is a covering map.

Proof. Let (x1,722) € X7 X Xs. Since pp,py are covering maps, there exist evenly covered
neighborhoods U; of x1 and U, of x5. That is,

o=y pt = us

acA BeB

where p; maps each Uf* homeomorphically to U; and p, maps each UQB homeomorphically
to Us. By definition of the product topology, U; X Us is an open neighborhood of (z1, xs).
Using the previous lemma,

(p1 X p2) Uy x Us) = pr (U1) x p3 ' (Us) = (|_| Uf‘) x (l_l Uf) = || @wrxuh)
(a,8

acA peB a,B)EAxB

Again, by definition of the product topology, U X UQB is open in X; x X,. We claim that
(p1 X p2)|foU§ - U x UY — Uy x Uy is a homeomorphism.

First we show that it is surjective. Let (x1,25) € U; X Us. Then by the even covering
properties of py, pe, there exist T; € U and 75 € UQﬂ so that pi(71) = z1 and p2(T2) = .



Thus (F1,72) € U® x UY and (p1 X ps)(F1,72) = (21, x2). This establishes surjectivity. Now
suppose that there exist (F1,%5), (J1,2) € U® x UL so that

(p1 X p2)(T1,72) = (1 X p2) (U1, Y2)

Then pi(z1) = p1(y1) with 1,7, € U, But then by injectivity of p; on this domain, this
implies 71 = y;. Similarly, o = 73. Hence p; X py is injective on this domain. Continuity of
p1 X po comes from the properties of the product topology, and continuity of the inverse on
the restricted domain also comes from the properties of the product topology, this time on
Up x Uf .

Thus (p; x p2)|foU§ Uy % UQﬁ — Uy x Us is a homeomorphism. Thus U; x U, is evenly
covered, so p; X po is a covering map. O

Proposition 0.12 (written exercise from Prof. Hedden). Not every local homeomorphism
18 @ covering map.

Proof. Let X = {x1, x5} with the trivial topology, that is, the only open sets are (), X. Let
Y = {y1,92,y3} with open sets 0,Y, {y1,y2}. (Note that this is a topology on Y.) Define
f:X =Y by f(x1) =y and f(z3) = yo. We claim that f is a local homeomorphism but
not a covering map. First, note that f is continuous, since the preimages

0=0 ) =X fTyeh =X

are open. It is a local homeomorphism because for either x1, 29 € X, neighborhood U = X
gives the restriction f : {x1, 22} — {v1,y2}, which is a homeomorphism. However, f is not a
covering map. Consider the point y3 € Y. The only open neighborhood is Y itself, but the
preimage of Y is X, which is a disjoint union of spaces mapped homeomorphically to X. [



