Homework 3 MTH 869 Algebraic Topology

Joshua Ruiter

February 12, 2018

Proposition 0.1 (Exercise 1.1.10). Let (X, x_0) and (Y, y_0) be pointed, path-connected spaces. Let $f: I \to X \times \{y_0\}$ and $g: I \to \{x_0\} \times Y$ both be loops based at (x_0, y_0) . Via inclusions, we can think of f, g as loops $I \to X \times Y$ based at (x_0, y_0) . Let $p_X: X \times Y \to X$ and $p_Y: X \times Y \to Y$ be the standard projections. Then we have $f \cdot g \simeq g \cdot f$ via the homotopy

$$h_t(s) = \begin{cases} g(2s) & 0 \le s \le t/2\\ (p_X f(2s-t), p_Y g(t)) & t/2 \le s \le t/2 + 1/2\\ g(2s-1) & t/2 + 1/2 \le s \le 1 \end{cases}$$

As a consequence, we have [f][g] = [g][f].

Proof. Define h_t as above. We check that the potentially conflicting definitions agree on the overlaps. When s = t/2, we have

$$h_t(s) = g(2s) = g(t) = (x_0, p_Y g(t))$$

$$h_t(s) = (p_X f(2(t/2) - t), p_Y (g(t)) = (p_X f(0), p_Y g(t)) = (x_0, p_Y g(t))$$

When s = t/2 + 1/2, we have

$$h_t(s) = (p_X f(2(t/2+1/2)-t), p_Y g(t)) = (p_X f(t+1-t), p_Y g(t))$$

$$= (p_X f(1), p_Y g(t)) = (x_0, p_Y g(t))$$

$$h_t(s) = (x_0, p_Y g(2(t/2+1/2)-1)) = (x_0, p_Y g(t+1-1)) = (x_0, p_Y g(t))$$

Now we check that h_t is a homotopy of paths. It is immediate to check that it fixes the endpoints for all t:

$$h_t(0) = g(0) = (x_0, y_0)$$

 $h_t(1) = g(2(1) - 1) = g(1) = (x_0, y_0)$

Now we show that $h_0 = f \cdot g$ and $h_1 = g \cdot f$.

$$h_0(s) = \begin{cases} g(2s) & 0 \le s \le 0 \\ (p_X f(2s), p_Y g(0)) & 0 \le s \le 1/2 \\ g(2s-1) & 1/2 \le s \le 1 \end{cases}$$

$$= \begin{cases} (p_X (f(2s), y_0) & 0 \le s \le 1/2 \\ g(2s-1) & 1/2 \le s \le 1 \end{cases}$$

$$= \begin{cases} f(2s) & 0 \le s \le 1/2 \\ g(2s-1) & 1/2 \le s \le 1 \end{cases}$$

$$= f \cdot g(s)$$

$$h_1(s) = \begin{cases} g(2s) & 0 \le s \le 1/2 \\ (p_X f(2s-1), p_Y g(1)) & 1/2 \le s \le 1 \\ g(2s-1) & 1 \le s \le 1 \end{cases}$$

$$= \begin{cases} g(2s) & 0 \le s \le 1/2 \\ (p_X (f(2s-1), y_0) & 1/2 \le s \le 1 \end{cases}$$

$$= \begin{cases} g(2s) & 0 \le s \le 1/2 \\ (p_X (f(2s-1), y_0) & 1/2 \le s \le 1 \end{cases}$$

$$= \begin{cases} g(2s) & 0 \le s \le 1/2 \\ f(2s-1) & 1/2 \le s \le 1 \end{cases}$$

$$= g \cdot f(s)$$

Thus $f \cdot g \simeq g \cdot f$. Hence

$$[f][g] = [f \cdot g] = [g \cdot f] = [g][f]$$

Proposition 0.2 (Exercise 1.1.14). Let X, Y be path connected spaces. Let $p_1 : X \times Y \to X$ and $p_2 : X \times Y \to Y$ be the projections $(x, y) \mapsto x$ and $(x, y) \mapsto y$ respectively. We have induced homomorphisms $p_{1*} : \pi_1(X \times Y) \to \pi_1(X)$ and $p_{2*} : \pi_1(X \times Y) \to \pi_1(Y)$. Define $\phi : \pi_1(X \times Y) \to \pi_1(X) \times \pi_1(Y)$ by

$$[f] \mapsto (p_{1*}[f], p_{2*}[f])$$

Then ϕ is a group isomorphism.

Proof. First we show that ϕ is a group homomorphism. Since p_{1*} is a homomorphism,

$$p_{1*}([f][g]) = (p_{1*}[f])(p_{1*}[g])$$

and likewise for p_{2*} . Thus

$$\phi([f][g]) = (p_{1*}([f][g]), p_{2*}([f][g])) = ((p_{1*}[f])(p_{1*}[g]), (p_{2*}[f])(p_{2*}[g]))$$
$$= (p_{1*}[f], p_{2*}[f])(p_{1*}[g], p_{2*}[g]) = (\phi[f])(\phi[g])$$

so ϕ is a homomorphism. Now we show that ϕ is surjective. Let $([f_x], [f_y]) \in \pi_1(X) \times \pi_1(Y)$, and choose representatives f_x, f_y . Define $f: I \to X \times Y$ by $f(t) = (f_x(t), f_y(t))$. Then

$$\phi[f] = (p_{1*}[f], p_{2*}[f]) = ([p_1 \circ f], [p_2 \circ f]) = ([f_x], [f_y])$$

Hence ϕ is surjective. Finally, we show that ϕ is injective by showing that the kernel is trivial. Let $[f] \in \ker \phi$, and choose a representative f. Since $[f] \in \ker \phi$, we have $p_{1*}[f] = [p_1 \circ f] = 0$ and $p_{2*}[f] = [p_2 \circ f] = 0$. Thus $p_1 \circ f$ and $p_2 \circ f$ are homotopic to constant maps, say via homotopies $h_t^1: I \to X$ and $h_t^2: I \to Y$, that is,

$$h_0^1 = p_1 \circ f$$
 $h_0^2 = p_2 \circ f$
 $h_1^1 = c_1$ $h_1^2 = c_2$

for some constants $c_1 \in X$, $c_2 \in Y$. Then f is homotopic to a constant map via $(s,t) \mapsto (h_t^1(s), h_t^2(s))$, since

$$(s,0) \mapsto (h_0^1(s), h_0^2(s)) = (p_1 \circ f(s), p_2 \circ f(s)) = f(s)$$

 $(s,1) \mapsto (h_1^1(s), h_1^2(s)) = (c_1, c_2)$

Thus [f] = 0, so $\ker \phi$ is trivial, so ϕ is injective. This completes the proof that ϕ is an isomorphism.

Lemma 0.3 (for topological group problem). Let X be a topological group with identity e. For loops $f, g : I \to X$ based at e, define $f * g : I \to X$ by (f * g)(s) = f(s)g(s). This induces $* : \pi_1(X, e) \times \pi_1(X, e) \to \pi_1(X, e)$ given by [f] * [g] = [f * g]. We claim that this is well-defined. Furthermore,

$$(f*g)\cdot (f'*g') = (f\cdot f')*(g\cdot g')$$

Using \cdot for the usual multiplication in $\pi_1(X)$, we have

$$\left([f]\cdot[f']\right)*\left([g]\cdot[g']\right)=\left([f]*[g]\right)\cdot\left([f']*[g']\right)$$

Proof. Suppose [f] = [f'] and [g] = [g]', so we have homotopies $f_t : I \to X$ and $g_t : I \to X$ satisfying

$$f_0 = f$$
 $f_1 = f'$ $f_t(0) = f_t(1) = e$
 $g_0 = g$ $g_1 = g'$ $g_t(0) = g_t(1) = e$

Then define $h_t: I \to X$ by $h_t(s) = f_t(s)g_t(s)$. Then

$$h_0(s) = f(s)g(s) = (f * g)(s)$$

$$h_1(s) = f'(s)g'(s) = (f' * g')(s)$$

$$h_t(0) = f_t(0)g_t(0) = e$$

$$h_t(1) = f_t(1)g_t(1) = e$$

Thus h_t is a homotopy from f * g to f' * g', so [f * g] = [f' * g']. Thus the operation is well-defined. Now we compute

$$\begin{split} \big((f*g)\cdot(f'*g')\big)(s) &= \begin{cases} (f*g)(2s) & 0 \le s \le 1/2 \\ (f'*g')(2s-1) & 1/2 \le s \le 1 \end{cases} \\ &= \begin{cases} f(2s)g(2s) & 0 \le s \le 1/2 \\ f'(2s-1)g'(2s-1) & 1/2 \le s \le 1 \end{cases} \\ &= \left(\begin{cases} f(2s) & 0 \le s \le 1/2 \\ f'(2s-1) & 1/2 \le s \le 1 \end{cases} \right) \left(\begin{cases} g(2s) & 0 \le s \le 1/2 \\ g'(2s-1) & 1/2 \le s \le 1 \end{cases} \right) \\ &= (f \cdot f'(s)) \left(g \cdot g'(s)\right) \\ &= ((f \cdot f')*(g \cdot g'))(s) \end{split}$$

Thus

$$(f * g) \cdot (f' * g') = (f \cdot f') * (g \cdot g')$$

By reflexivity, from this we get

$$(f * g) \cdot (f' * g') \simeq (f \cdot f') * (g \cdot g')$$

Thus

$$\left([f]\cdot[f']\right)*\left([g]\cdot[g']\right)=\left([f]*[g]\right)\cdot\left([f']*[g']\right)$$

Lemma 0.4 (Eckmann-Hilton Theorem). Let X be a set with two binary operations $*, \cdot$. Suppose that both operations have a unit, that is, there exist $e, e' \in X$ so that

$$e \cdot x = x = x \cdot e$$
 $e' * x = x = x * e'$

for all $x \in X$. Suppose also that for all $w, x, y, z \in X$ we have

$$(w \cdot x) * (y \cdot z) = (w * y) \cdot (x * z)$$

Then $\cdot, *$ are equal, associative, and commutative. That is, for all $x, y, z \in X$,

$$x \cdot y = x * y$$
$$x \cdot y = y \cdot x$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Proof. First, we show that e = e'.

$$e = e \cdot e = (e' * e) \cdot (e * e') = (e' \cdot e) * (e \cdot e') = e' * e' = e'$$

Let $x, y \in X$. Then

$$x \cdot y = (x * e) \cdot (e * y) = (x \cdot e) * (e \cdot y) = x * y$$

Thus the operations coincide. Also,

$$x \cdot y = (e * x) \cdot (y * e) = (e \cdot y) * (x \cdot e) = y * x$$

Thus x * y = y * x so the operations are commutative. Finally,

$$x \cdot (y \cdot z) = (x \cdot 1) \cdot (y \cdot z) = (x \cdot y) \cdot (1 \cdot z) = (x \cdot y) \cdot z$$

Thus they are associative.

Proposition 0.5 (written exercise from Prof. Hedden). Let X be a topological group. Then $\pi_1(X, e)$ is abelian.

Proof. Define multiplication of paths elementwise as in Lemma 0.3 above. As shown in that lemma,

$$([f] \cdot [f']) * ([g] \cdot [g']) = ([f] * [g]) \cdot ([f'] * [g'])$$

Thus $\cdot, *$ are binary operations on $\pi_1(X)$ satisfying the hypotheses of the Eckmann-Hilton Theorem, so they are equal and abelian. Thus the usual multiplication on $\pi_1(X)$ is abelian.

Proposition 0.6 (Exercise 1.1.18, part one). Let A be a path-connected space. Form X by attaching an n-cell e^n with $n \geq 2$. Then the inclusion $\iota : A \hookrightarrow X$ induces a surjection on π_1 . That is, $\iota_* : \pi_1(A) \to \pi_1(X)$ is surjective.

Proof. Let $f: S^{n-1} \to A$ be the attaching map. Then $X = A \cup e^n$, where A and e^n are path connected and open in X, and $A \cap e^n = f(S^{n-1})$ is also path-connected. Let $x_0 \in f(S^{n-1})$. By Lemma 1.15 (Hatcher), every loop in X based at x_0 is homotopic to a product of loops, where each loop is either contained in e^n or A. Since $n \geq 2$, a loop contained in e^n is nullhomotopic, so every loop in X is homotopic to a loop in A. Thus if $[f] \in \pi_1(X, x_0)$, there there is a loop $f': I \to A$ so that [f'] = [f]. We have $f' = \iota \circ f'$, so

$$\iota_*[f'] = [\iota \circ f'] = [f'] = [f]$$

Hence ι_* is surjective.

Proposition 0.7 (Exercise 1.1.18a). The wedge sum $S^1 \vee S^2$ has fundamental group \mathbb{Z} .

Proof. As noted in Example 0.11 of Hatcher, $S^1 \vee S^2$ can be formed by attaching S^2 to S^1 via a constant map. By the above, the inclusion $\iota: S^1 \to S^1 \vee S^2$ induces a surjection $\iota_*: \pi_1(S^1) \to \pi_1(S^1 \vee S^2)$. By the first isomorphism theorem of groups,

$$\pi_1(S^1 \vee S^2) \cong \pi_1(S^1) / \ker \iota_*$$

Thus $\pi_1(S^1 \vee S^2)$ is isomorphic to a quotient group of \mathbb{Z} , so it is cyclic. Note that $\pi_1(S^1 \vee S^2)$ is not finite, since it contains infinitely many non-homotopic loops (take loops winding n times around the S^1 part for $n \in \mathbb{N}$). Thus $\pi_1(S^1 \vee S^2)$ is infinite cyclic, that is, isomorphic to \mathbb{Z} .

Proposition 0.8 (Exercise 1.1.18b). Let X be a path-connected CW complex with X^1 its 1-skeleton. Then the inclusion map $\iota: X^1 \hookrightarrow X$ induces a surjection $\iota_*: \pi_1(X^1) \to \pi_1(X)$.

Proof. The space X is formed from X^1 by attaching n-cells for $n \geq 2$. First, suppose there are finitely many cells e_1, \ldots, e_k . Let $X_0 = X^1$, and define X_i to be the CW complex formed after attaching e_i to X_{i+1} , so $X_k = X$. Then each inclusion $\iota_i : X_i \hookrightarrow X_{i+1}$ induces a surjection $\iota_{i*} : \pi_1(X_i) \to \pi_1(X_{i+1})$, so the (finite) composition

$$\iota_{k*}\iota_{(k-1)*}\ldots\iota_{1*}\iota_{0*}=(\iota_{k}\iota_{k-1}\ldots\iota_{1}\iota_{0})_{*}=\iota_{*}$$

is surjective.

Now suppose that X has infinitely many cells. Let $[f] \in \pi_1(X)$ and choose a representative loop f. The image of f is a compact subset of X, so by Proposition A.1 in the Appendix (Hatcher), the image is contained in a finite subcomplex $\overline{X} \subset X$. Let \overline{X}^1 be the 1-skeleton of \overline{X} , so $\overline{X}^1 \subset X^1$. Let $\overline{\iota} : \overline{X}^1 \hookrightarrow \overline{X}$ be the inclusion.

By the result in the finite case, $\bar{\iota}_*: \pi_1(\overline{X}^1) \to \pi_1(\overline{X})$ is surjective. Since the image of f lies in \overline{X} , we can think of $[f] \in \pi_1(\overline{X})$. By surjectivity of $\bar{\iota}_*$, there exists $\left[\widetilde{f}\right] \in \pi_1(\overline{X}^1)$ so that $\bar{\iota}_*\left[\widetilde{f}\right] = [f]$. Choose a representative \widetilde{f} . Since the image of \widetilde{f} is contained in $\overline{X}^1 \subset X^1$, we also have $\left[\widetilde{f}\right] \in \pi_1(X^1)$. Note that $\iota \circ \widetilde{f} = \bar{\iota} \circ \widetilde{f}$ since the image of \widetilde{f} lies in \overline{X}^1 . Thus

$$\iota_*\left[\widetilde{f}\right] = \left[\iota \circ \widetilde{f}\right] = \left[\overline{\iota} \circ \widetilde{f}\right] = \overline{\iota}_*\left[\widetilde{f}\right] = [f]$$

Thus ι_* is surjective.

Proposition 0.9 (Exercise 1.3.1). Let $p: \widetilde{X} \to X$ be a covering map and $A \subset X$, and let $\widetilde{A} = p^{-1}(A)$. Then the restriction $p|_{\widetilde{A}}: \widetilde{A} \to A$ is a covering map.

Proof. Let $a \in A$. Since p is a covering map, there is an evenly covered neighborhood U so that $a \in U \subset X$. That is,

$$p^{-1}(U) = \bigsqcup_{\alpha} U_{\alpha}$$

where each U_{α} is mapped homeomorphically to U by p. By definition of subspace topology, $U \cap A$ is an open neighborhood of a in A. Using basic properties of preimages,

$$p^{-1}(U \cap A) = p^{-1}(U) \cap p^{-1}(A) = \left(\bigsqcup_{\alpha} U_{\alpha}\right) \cap \widetilde{A} = \bigsqcup_{\alpha} (U_{\alpha} \cap \widetilde{A})$$

Then

$$p(U_{\alpha} \cap \widetilde{A}) \subset p(U_{\alpha}) \cap p(\widetilde{A}) = p(U_{\alpha}) \cap A = U \cap A$$

so $p|_{U_{\alpha}\cap\widetilde{A}}:U_{\alpha}\cap\widetilde{A}\to U\cap A$ is well-defined. First we claim that it is surjective. Let $x\in U\cap A$. Since $x\in U$, there exists $x_{\alpha}\in U_{\alpha}$ so that $p(x_{\alpha})=x$., Since $x\in A$, $x_{\alpha}\in\widetilde{A}$,

so $x_{\alpha} \in U_{\alpha} \cap \widetilde{A}$. Thus $p|_{U_{\alpha} \cap \widetilde{A}}$ is surjective. It is injective since it is a restriction of the injective map $p|_{U_{\alpha}}: U_{\alpha} \to U$. Thus it is bijective. It is continuous because it is a restriction of the continuous map p. It has a continuous inverse since its inverse is a restriction of the continuous inverse of $p|_{U_{\alpha}}$.

Thus $p|_{U_{\alpha}\cap\widetilde{A}}$ maps $U_{\alpha}\cap\widetilde{A}$ homeomorphically onto $U\cap A$. Since $U\cap A$ is a disjoint union of such sets, $U\cap A$ is an evenly covered neighborhood of $a\in A$. Hence $p|_{\widetilde{A}}$ is a covering map.

Lemma 0.10 (for Exercise 1.3.2). Let $p_1: \widetilde{X}_1 \to X_1$ and $p_2: \widetilde{X}_2 \to X_2$ be set maps. Let $U_1 \subset X_1$ and $U_2 \subset X_2$. Then

$$(p_1 \times p_2)^{-1}(U_1 \times U_2) = p_1^{-1}(U_1) \times p_2^{-1}(U_2)$$

Proof. This is a straightforward use of definitions.

$$(p_1 \times p_2)(U_1 \times U_2) = \{ (\widetilde{x}_1, \widetilde{x}_2) \in \widetilde{X}^1 \times \widetilde{X}^2 : (p_1 \times p_2)(\widetilde{x}_1, \widetilde{x}_2) \in U_1 \times U_2 \}$$

$$= \{ (\widetilde{x}_1, \widetilde{x}_2) \in \widetilde{X}^1 \times \widetilde{X}^2 : (p_1(\widetilde{x}_1), p_2(\widetilde{x}_2)) \in U_1 \times U_2 \}$$

$$= \{ (\widetilde{x}_1, \widetilde{x}_2) \in \widetilde{X}^1 \times \widetilde{X}^2 : \widetilde{x}_1 \in p_1^{-1}(U_1), \widetilde{x}_2 \in p_2^{-1}(U_2) \}$$

$$= p_1^{-1}(U_1) \times p_2^{-1}(U_2)$$

Proposition 0.11 (Exercise 1.3.2). Let $p_1: \widetilde{X}_1 \to X_1$ and $\widetilde{p}_2: \widetilde{X}_2 \to X_2$ be covering maps. Then the product $p_1 \times p_2: \widetilde{X}_1 \times \widetilde{X}_2 \to X_1 \times X_2$ is a covering map.

Proof. Let $(x_1, x_2) \in X_1 \times X_2$. Since p_1, p_2 are covering maps, there exist evenly covered neighborhoods U_1 of x_1 and U_2 of x_2 . That is,

$$p_1^{-1}(U_1) = \bigsqcup_{\alpha \in A} U_1^{\alpha} \qquad p_2^{-1}(U_2) = \bigsqcup_{\beta \in B} U_2^{\beta}$$

where p_1 maps each U_1^{α} homeomorphically to U_1 and p_2 maps each U_2^{β} homeomorphically to U_2 . By definition of the product topology, $U_1 \times U_2$ is an open neighborhood of (x_1, x_2) . Using the previous lemma,

$$(p_1 \times p_2)^{-1}(U_1 \times U_2) = p_1^{-1}(U_1) \times p_2^{-1}(U_2) = \left(\bigsqcup_{\alpha \in A} U_1^{\alpha}\right) \times \left(\bigsqcup_{\beta \in B} U_2^{\beta}\right) = \bigsqcup_{(\alpha,\beta) \in A \times B} (U_1^{\alpha} \times U_2^{\beta})$$

Again, by definition of the product topology, $U_1^{\alpha} \times U_2^{\beta}$ is open in $\widetilde{X}_1 \times \widetilde{X}_2$. We claim that $(p_1 \times p_2)|_{U_1^{\alpha} \times U_2^{\beta}} : U_1^{\alpha} \times U_2^{\beta} \to U_1 \times U_2$ is a homeomorphism.

First we show that it is surjective. Let $(x_1, x_2) \in U_1 \times U_2$. Then by the even covering properties of p_1, p_2 , there exist $\widetilde{x}_1 \in U_1^{\alpha}$ and $\widetilde{x}_2 \in U_2^{\beta}$ so that $p_1(\widetilde{x}_1) = x_1$ and $p_2(\widetilde{x}_2) = x_2$.

Thus $(\widetilde{x}_1, \widetilde{x}_2) \in U_1^{\alpha} \times U_2^{\beta}$ and $(p_1 \times p_2)(\widetilde{x}_1, \widetilde{x}_2) = (x_1, x_2)$. This establishes surjectivity. Now suppose that there exist $(\widetilde{x}_1, \widetilde{x}_2), (\widetilde{y}_1, \widetilde{y}_2) \in U_1^{\alpha} \times U_2^{\beta}$ so that

$$(p_1 \times p_2)(\widetilde{x}_1, \widetilde{x}_2) = (p_1 \times p_2)(\widetilde{y}_1, \widetilde{y}_2)$$

Then $p_1(\widetilde{x}_1) = p_1(\widetilde{y}_1)$ with $\widetilde{x}_1, \widetilde{y}_1 \in U_1^{\alpha}$. But then by injectivity of p_1 on this domain, this implies $\widetilde{x}_1 = \widetilde{y}_1$. Similarly, $\widetilde{x}_2 = \widetilde{y}_2$. Hence $p_1 \times p_2$ is injective on this domain. Continuity of $p_1 \times p_2$ comes from the properties of the product topology, and continuity of the inverse on the restricted domain also comes from the properties of the product topology, this time on $U_1^{\alpha} \times U_2^{\beta}$.

Thus $(p_1 \times p_2)|_{U_1^{\alpha} \times U_2^{\beta}} : U_1^{\alpha} \times U_2^{\beta} \to U_1 \times U_2$ is a homeomorphism. Thus $U_1 \times U_2$ is evenly covered, so $p_1 \times p_2$ is a covering map.

Proposition 0.12 (written exercise from Prof. Hedden). Not every local homeomorphism is a covering map.

Proof. Let $X = \{x_1, x_2\}$ with the trivial topology, that is, the only open sets are \emptyset , X. Let $Y = \{y_1, y_2, y_3\}$ with open sets \emptyset , Y, $\{y_1, y_2\}$. (Note that this is a topology on Y.) Define $f: X \to Y$ by $f(x_1) = y_1$ and $f(x_2) = y_2$. We claim that f is a local homeomorphism but not a covering map. First, note that f is continuous, since the preimages

$$f^{-1}\emptyset = \emptyset$$
 $f^{-1}(Y) = X$ $f^{-1}(\{y_1, y_2\}) = X$

are open. It is a local homeomorphism because for either $x_1, x_2 \in X$, neighborhood U = X gives the restriction $f : \{x_1, x_2\} \to \{y_1, y_2\}$, which is a homeomorphism. However, f is not a covering map. Consider the point $y_3 \in Y$. The only open neighborhood is Y itself, but the preimage of Y is X, which is a disjoint union of spaces mapped homeomorphically to X. \square