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Proposition 0.1 (Exercise 1.1.10). Let (X, x0) and (Y, y0) be pointed, path-connected spaces.
Let f : I → X × {y0} and g : I → {x0} × Y both be loops based at (x0, y0). Via inclusions,
we can think of f, g as loops I → X × Y based at (x0, y0). Let pX : X × Y → X and
pY : X × Y → Y be the standard projections. Then we have f · g ' g · f via the homotopy

ht(s) =


g(2s) 0 ≤ s ≤ t/2

(pXf(2s− t), pY g(t)) t/2 ≤ s ≤ t/2 + 1/2

g(2s− 1) t/2 + 1/2 ≤ s ≤ 1

As a consequence, we have [f ][g] = [g][f ].

Proof. Define ht as above. We check that the potentially conflicting definitions agree on the
overlaps. When s = t/2, we have

ht(s) = g(2s) = g(t) = (x0, pY g(t))

ht(s) = (pXf(2(t/2)− t), pY (g(t)) = (pXf(0), pY g(t)) = (x0, pY g(t))

When s = t/2 + 1/2, we have

ht(s) = (pXf(2(t/2 + 1/2)− t), pY g(t)) = (pXf(t+ 1− t), pY g(t))

= (pXf(1), pY g(t)) = (x0, pY g(t))

ht(s) = (x0, pY g(2(t/2 + 1/2)− 1)) = (x0, pY g(t+ 1− 1)) = (x0, pY g(t))

Now we check that ht is a homotopy of paths. It is immediate to check that it fixes the
endpoints for all t:

ht(0) = g(0) = (x0, y0)

ht(1) = g(2(1)− 1) = g(1) = (x0, y0)
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Now we show that h0 = f · g and h1 = g · f .

h0(s) =


g(2s) 0 ≤ s ≤ 0

(pXf(2s), pY g(0)) 0 ≤ s ≤ 1/2

g(2s− 1) 1/2 ≤ s ≤ 1

=

{
(pX(f(2s), y0) 0 ≤ s ≤ 1/2

g(2s− 1) 1/2 ≤ s ≤ 1

=

{
f(2s) 0 ≤ s ≤ 1/2

g(2s− 1) 1/2 ≤ s ≤ 1

= f · g(s)

h1(s) =


g(2s) 0 ≤ s ≤ 1/2

(pXf(2s− 1), pY g(1)) 1/2 ≤ s ≤ 1

g(2s− 1) 1 ≤ s ≤ 1

=

{
g(2s) 0 ≤ s ≤ 1/2

(pX(f(2s− 1), y0) 1/2 ≤ s ≤ 1

=

{
g(2s) 0 ≤ s ≤ 1/2

f(2s− 1) 1/2 ≤ s ≤ 1

= g · f(s)

Thus f · g ' g · f . Hence
[f ][g] = [f · g] = [g · f ] = [g][f ]

Proposition 0.2 (Exercise 1.1.14). Let X, Y be path connected spaces. Let p1 : X×Y → X
and p2 : X × Y → Y be the projections (x, y) 7→ x and (x, y) 7→ y respectively. We have
induced homomorphisms p1∗ : π1(X × Y ) → π1(X) and p2∗ : π1(X × y) → π1(Y ). Define
φ : π1(X × Y )→ π1(X)× π1(Y ) by

[f ] 7→ (p1∗[f ], p2∗[f ])

Then φ is a group isomorphism.

Proof. First we show that φ is a group homomorphism. Since p1∗ is a homomorphism,

p1∗([f ][g]) = (p1∗[f ])(p1∗[g])

and likewise for p2∗. Thus

φ([f ][g]) = (p1∗([f ][g]), p2∗([f ][g])) =
(
(p1∗[f ])(p1∗[g]), (p2∗[f ])(p2∗[g])

)
=
(
p1∗[f ], p2∗[f ]

)(
p1∗[g], p2∗[g]

)
= (φ[f ])(φ[g])
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so φ is a homomorphism. Now we show that φ is surjective. Let ([fx], [fy]) ∈ π1(X)×π1(Y ),
and choose representatives fx, fy. Define f : I → X × Y by f(t) = (fx(t), fy(t)). Then

φ[f ] = (p1∗[f ], p2∗[f ]) = ([p1 ◦ f ], [p2 ◦ f ]) = ([fx], [fy])

Hence φ is surjective. Finally, we show that φ is injective by showing that the kernel is trivial.
Let [f ] ∈ kerφ, and choose a representative f . Since [f ] ∈ kerφ, we have p1∗[f ] = [p1 ◦f ] = 0
and p2∗[f ] = [p2 ◦ f ] = 0. Thus p1 ◦ f and p2 ◦ f are homotopic to constant maps, say via
homotopies h1t : I → X and h2t : I → Y , that is,

h10 = p1 ◦ f h20 = p2 ◦ f
h11 = c1 h21 = c2

for some constants c1 ∈ X, c2 ∈ Y . Then f is homotopic to a constant map via (s, t) 7→
(h1t (s), h

2
t (s)), since

(s, 0) 7→ (h10(s), h
2
0(s)) = (p1 ◦ f(s), p2 ◦ f(s)) = f(s)

(s, 1) 7→ (h11(s), h
2
1(s)) = (c1, c2)

Thus [f ] = 0, so kerφ is trivial, so φ is injective. This completes the proof that φ is an
isomorphism.

Lemma 0.3 (for topological group problem). Let X be a topological group with identity e.
For loops f, g : I → X based at e, define f ∗ g : I → X by (f ∗ g)(s) = f(s)g(s). This
induces ∗ : π1(X, e)× π1(X, e)→ π1(X, e) given by [f ] ∗ [g] = [f ∗ g]. We claim that this is
well-defined. Furthermore,

(f ∗ g) · (f ′ ∗ g′) = (f · f ′) ∗ (g · g′)

Using · for the usual multiplication in π1(X), we have(
[f ] · [f ′]

)
∗
(
[g] · [g′]

)
=
(
[f ] ∗ [g]

)
·
(
[f ′] ∗ [g′]

)
Proof. Suppose [f ] = [f ′] and [g] = [g]′, so we have homotopies ft : I → X and gt : I → X
satisfying

f0 = f f1 = f ′ ft(0) = ft(1) = e

g0 = g g1 = g′ gt(0) = gt(1) = e

Then define ht : I → X by ht(s) = ft(s)gt(s). Then

h0(s) = f(s)g(s) = (f ∗ g)(s)

h1(s) = f ′(s)g′(s) = (f ′ ∗ g′)(s)
ht(0) = ft(0)gt(0) = e

ht(1) = ft(1)gt(1) = e
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Thus ht is a homotopy from f ∗ g to f ′ ∗ g′, so [f ∗ g] = [f ′ ∗ g′]. Thus the operation is
well-defined. Now we compute

(
(f ∗ g) · (f ′ ∗ g′)

)
(s) =

{
(f ∗ g)(2s) 0 ≤ s ≤ 1/2

(f ′ ∗ g′)(2s− 1) 1/2 ≤ s ≤ 1

=

{
f(2s)g(2s) 0 ≤ s ≤ 1/2

f ′(2s− 1)g′(2s− 1) 1/2 ≤ s ≤ 1

=

({
f(2s) 0 ≤ s ≤ 1/2

f ′(2s− 1) 1/2 ≤ s ≤ 1

)({
g(2s) 0 ≤ s ≤ 1/2

g′(2s− 1) 1/2 ≤ s ≤ 1

)
=
(
f · f ′(s)

)(
g · g′(s)

)
=
(
(f · f ′) ∗ (g · g′)

)
(s)

Thus
(f ∗ g) · (f ′ ∗ g′) = (f · f ′) ∗ (g · g′)

By reflexivity, from this we get

(f ∗ g) · (f ′ ∗ g′) ' (f · f ′) ∗ (g · g′)

Thus (
[f ] · [f ′]

)
∗
(
[g] · [g′]

)
=
(
[f ] ∗ [g]

)
·
(
[f ′] ∗ [g′]

)
Lemma 0.4 (Eckmann-Hilton Theorem). Let X be a set with two binary operations ∗, ·.
Suppose that both operations have a unit, that is, there exist e, e′ ∈ X so that

e · x = x = x · e e′ ∗ x = x = x ∗ e′

for all x ∈ X. Suppose also that for all w, x, y, z ∈ X we have

(w · x) ∗ (y · z) = (w ∗ y) · (x ∗ z)

Then ·, ∗ are equal, associative, and commutative. That is, for all x, y, z ∈ X,

x · y = x ∗ y
x · y = y · x

(x · y) · z = x · (y · z)

Proof. First, we show that e = e′.

e = e · e = (e′ ∗ e) · (e ∗ e′) = (e′ · e) ∗ (e · e′) = e′ ∗ e′ = e′

4



Let x, y ∈ X. Then

x · y = (x ∗ e) · (e ∗ y) = (x · e) ∗ (e · y) = x ∗ y

Thus the operations coincide. Also,

x · y = (e ∗ x) · (y ∗ e) = (e · y) ∗ (x · e) = y ∗ x

Thus x ∗ y = y ∗ x so the operations are commutative. Finally,

x · (y · z) = (x · 1) · (y · z) = (x · y) · (1 · z) = (x · y) · z

Thus they are associative.

Proposition 0.5 (written exercise from Prof. Hedden). Let X be a topological group. Then
π1(X, e) is abelian.

Proof. Define multiplication of paths elementwise as in Lemma 0.3 above. As shown in that
lemma, (

[f ] · [f ′]
)
∗
(
[g] · [g′]

)
=
(
[f ] ∗ [g]

)
·
(
[f ′] ∗ [g′]

)
Thus ·, ∗ are binary operations on π1(X) satisfying the hypotheses of the Eckmann-Hilton
Theorem, so they are equal and abelian. Thus the usual multiplication on π1(X) is abelian.

Proposition 0.6 (Exercise 1.1.18, part one). Let A be a path-connected space. Form X by
attaching an n-cell en with n ≥ 2. Then the inclusion ι : A ↪→ X induces a surjection on π1.
That is, ι∗ : π1(A)→ π1(X) is surjective.

Proof. Let f : Sn−1 → A be the attaching map. Then X = A∪ en, where A and en are path
connected and open in X, and A ∩ en = f(Sn−1) is also path-connected. Let x0 ∈ f(Sn−1).
By Lemma 1.15 (Hatcher), every loop in X based at x0 is homotopic to a product of loops,
where each loop is either contained in en or A. Since n ≥ 2, a loop contained in en is
nullhomotopic, so every loop in X is homotopic to a loop in A. Thus if [f ] ∈ π1(X, x0), there
there is a loop f ′ : I → A so that [f ′] = [f ]. We have f ′ = ι ◦ f ′, so

ι∗[f
′] = [ι ◦ f ′] = [f ′] = [f ]

Hence ι∗ is surjective.

Proposition 0.7 (Exercise 1.1.18a). The wedge sum S1 ∨ S2 has fundamental group Z.

Proof. As noted in Example 0.11 of Hatcher, S1 ∨ S2 can be formed by attaching S2 to S1

via a constant map. By the above, the inclusion ι : S1 → S1 ∨ S2 induces a surjection
ι∗ : π1(S

1)→ π1(S
1 ∨ S2). By the first isomorphism theorem of groups,

π1(S
1 ∨ S2) ∼= π1(S

1)/ ker ι∗

Thus π1(S
1∨S2) is isomorphic to a quotient group of Z, so it is cyclic. Note that π1(S

1∨S2)
is not finite, since it contains infinitely many non-homotopic loops (take loops winding n
times around the S1 part for n ∈ N). Thus π1(S

1 ∨ S2) is infinite cyclic, that is, isomorphic
to Z.
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Proposition 0.8 (Exercise 1.1.18b). Let X be a path-connected CW complex with X1 its
1-skeleton. Then the inclusion map ι : X1 ↪→ X induces a surjection ι∗ : π1(X

1)→ π1(X).

Proof. The space X is formed from X1 by attaching n-cells for n ≥ 2. First, suppose there
are finitely many cells e1, . . . , ek. Let X0 = X1, and define Xi to be the CW complex formed
after attaching ei to Xi+1, so Xk = X. Then each inclusion ιi : Xi ↪→ Xi+1 induces a
surjection ιi∗ : π1(Xi)→ π1(Xi+1), so the (finite) composition

ιk∗ι(k−1)∗ . . . ι1∗ι0∗ = (ιkιk−1 . . . ι1ι0)∗ = ι∗

is surjective.
Now suppose that X has infinitely many cells. Let [f ] ∈ π1(X) and choose a representa-

tive loop f . The image of f is a compact subset of X, so by Proposition A.1 in the Appendix

(Hatcher), the image is contained in a finite subcomplex X ⊂ X. Let X
1

be the 1-skeleton

of X, so X
1 ⊂ X1. Let ι : X

1
↪→ X be the inclusion.

By the result in the finite case, ι∗ : π1(X
1
) → π1(X) is surjective. Since the image of f

lies in X, we can think of [f ] ∈ π1(X). By surjectivity of ι∗, there exists
[
f̃
]
∈ π1(X

1
) so

that ι∗

[
f̃
]

= [f ]. Choose a representative f̃ . Since the image of f̃ is contained in X
1 ⊂ X1,

we also have
[
f̃
]
∈ π1(X1). Note that ι ◦ f̃ = ι ◦ f̃ since the image of f̃ lies in X

1
. Thus

ι∗

[
f̃
]

=
[
ι ◦ f̃

]
=
[
ι ◦ f̃

]
= ι∗

[
f̃
]

= [f ]

Thus ι∗ is surjective.

Proposition 0.9 (Exercise 1.3.1). Let p : X̃ → X be a covering map and A ⊂ X, and let

Ã = p−1(A). Then the restriction p|Ã : Ã→ A is a covering map.

Proof. Let a ∈ A. Since p is a covering map, there is an evenly covered neighborhood U so
that a ∈ U ⊂ X. That is,

p−1(U) =
⊔
α

Uα

where each Uα is mapped homeomorphically to U by p. By definition of subspace topology,
U ∩ A is an open neighborhood of a in A. Using basic properties of preimages,

p−1(U ∩ A) = p−1(U) ∩ p−1(A) =

(⊔
α

Uα

)
∩ Ã =

⊔
α

(Uα ∩ Ã)

Then
p(Uα ∩ Ã) ⊂ p(Uα) ∩ p(Ã) = p(Uα) ∩ A = U ∩ A

so p|Uα∩Ã : Uα ∩ Ã → U ∩ A is well-defined. First we claim that it is surjective. Let

x ∈ U ∩ A. Since x ∈ U , there exists xα ∈ Uα so that p(xα) = x., Since x ∈ A, xα ∈ Ã,
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so xα ∈ Uα ∩ Ã. Thus p|Uα∩Ã is surjective. It is injective since it is a restriction of the
injective map p|Uα : Uα → U . Thus it is bijective. It is continuous because it is a restriction
of the continuous map p. It has a continuous inverse since its inverse is a restriction of the
continuous inverse of p|Uα .

Thus p|Uα∩Ã maps Uα ∩ Ã homeomorphically onto U ∩A. Since U ∩A is a disjoint union
of such sets, U ∩ A is an evenly covered neighborhood of a ∈ A. Hence p|Ã is a covering
map.

Lemma 0.10 (for Exercise 1.3.2). Let p1 : X̃1 → X1 and p2 : X̃2 → X2 be set maps. Let
U1 ⊂ X1 and U2 ⊂ X2. Then

(p1 × p2)−1(U1 × U2) = p−11 (U1)× p−12 (U2)

Proof. This is a straightforward use of definitions.

(p1 × p2)(U1 × U2) = {(x̃1, x̃2) ∈ X̃1 × X̃2 : (p1 × p2)(x̃1, x̃2) ∈ U1 × U2}
= {(x̃1, x̃2) ∈ X̃1 × X̃2 : (p1(x̃1), p2(x̃2)) ∈ U1 × U2}
= {(x̃1, x̃2) ∈ X̃1 × X̃2 : x̃1 ∈ p−11 (U1), x̃2 ∈ p−12 (U2)}
= p−11 (U1)× p−12 (U2)

Proposition 0.11 (Exercise 1.3.2). Let p1 : X̃1 → X1 and p̃2 : X̃2 → X2 be covering maps.

Then the product p1 × p2 : X̃1 × X̃2 → X1 ×X2 is a covering map.

Proof. Let (x1, x2) ∈ X1 × X2. Since p1, p2 are covering maps, there exist evenly covered
neighborhoods U1 of x1 and U2 of x2. That is,

p−11 (U1) =
⊔
α∈A

Uα
1 p−12 (U2) =

⊔
β∈B

Uβ
2

where p1 maps each Uα
1 homeomorphically to U1 and p2 maps each Uβ

2 homeomorphically
to U2. By definition of the product topology, U1 × U2 is an open neighborhood of (x1, x2).
Using the previous lemma,

(p1 × p2)−1(U1 × U2) = p−11 (U1)× p−12 (U2) =

(⊔
α∈A

Uα
1

)
×

(⊔
β∈B

Uβ
2

)
=

⊔
(α,β)∈A×B

(Uα
1 × U

β
2 )

Again, by definition of the product topology, Uα
1 × U

β
2 is open in X̃1 × X̃2. We claim that

(p1 × p2)|Uα
1 ×U

β
2

: Uα
1 × U

β
2 → U1 × U2 is a homeomorphism.

First we show that it is surjective. Let (x1, x2) ∈ U1 × U2. Then by the even covering
properties of p1, p2, there exist x̃1 ∈ Uα

1 and x̃2 ∈ Uβ
2 so that p1(x̃1) = x1 and p2(x̃2) = x2.
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Thus (x̃1, x̃2) ∈ Uα
1 × U

β
2 and (p1 × p2)(x̃1, x̃2) = (x1, x2). This establishes surjectivity. Now

suppose that there exist (x̃1, x̃2), (ỹ1, ỹ2) ∈ Uα
1 × U

β
2 so that

(p1 × p2)(x̃1, x̃2) = (p1 × p2)(ỹ1, ỹ2)

Then p1(x̃1) = p1(ỹ1) with x̃1, ỹ1 ∈ Uα
1 . But then by injectivity of p1 on this domain, this

implies x̃1 = ỹ1. Similarly, x̃2 = ỹ2. Hence p1 × p2 is injective on this domain. Continuity of
p1 × p2 comes from the properties of the product topology, and continuity of the inverse on
the restricted domain also comes from the properties of the product topology, this time on
Uα
1 × U

β
2 .

Thus (p1× p2)|Uα
1 ×U

β
2

: Uα
1 ×U

β
2 → U1×U2 is a homeomorphism. Thus U1×U2 is evenly

covered, so p1 × p2 is a covering map.

Proposition 0.12 (written exercise from Prof. Hedden). Not every local homeomorphism
is a covering map.

Proof. Let X = {x1, x2} with the trivial topology, that is, the only open sets are ∅, X. Let
Y = {y1, y2, y3} with open sets ∅, Y, {y1, y2}. (Note that this is a topology on Y .) Define
f : X → Y by f(x1) = y1 and f(x2) = y2. We claim that f is a local homeomorphism but
not a covering map. First, note that f is continuous, since the preimages

f−1∅ = ∅ f−1(Y ) = X f−1({y1, y2}) = X

are open. It is a local homeomorphism because for either x1, x2 ∈ X, neighborhood U = X
gives the restriction f : {x1, x2} → {y1, y2}, which is a homeomorphism. However, f is not a
covering map. Consider the point y3 ∈ Y . The only open neighborhood is Y itself, but the
preimage of Y is X, which is a disjoint union of spaces mapped homeomorphically to X.
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